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Abstract 
Here, an idea of using a visible light wave to accel- 

erate relativistic particles via the inverse FEL mecha- 
nism is explored. A strain modulated crystal stmcture - 
the superlattice, plays the role of a microscopic undula- 
tar providing very strong ponderomotive coupling be- 
tween the beam and the light wave. Purely classical 
treatment of relativistic protons channeling through a 
superlattice is performed in a self consistent fashion in- 
volving the Maxwell wave equation for the accelet’atittg 
elecUomagnetlc field and the relativistic Boltzmann 
equation for the protons. It yields the accelerating efti- 
ciency in terms of the negative gain coefficient for the 
amplitude of the electromagnetic wave - the rate the en- 
ergy is extracted from the light by the beam. Presented 
analytic formalism allows one to fmd the acceleration 
rate in a simple closed fortn, which is further evaluated 
for a model beam - optical cavity system to verify fea- 
sibility of this scheme. 

I. INTRODUCTION 

The main idea of using a modulated crystal stmc- 
tore as an undulator is illustrated schematically in 
Figure 1. A beam of relativistic particles while channel- 
ing through the crystal follows well defined trajectories. 
The particles are periodically accelerated petpendicular to 
their flight path as they traverse the channel. Ihe tmdu- 
later wavelengths typically fall in the range XI-500 A, 
far shorter than those of any macroscopic undulator. 
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Figure 1 Center of the channeling trajectory in [I 101 
direction in a swain-modulated superlattice. 

Furthermore, the electrostatic crystal fields involve the 
Lie averaged nuclear field and can be two or more orders 
of magnitude larger than the equivalent fields of macro- 
scopic magnetic undulators. Both of these factors hold 
the promise of greatly enhanced coupling between the 
beam and the accelerating electromagnetic wave. 

II. SUPERLA7TICE CHANNELING 

One can describe a high intensity proton beam in 
terms of a classical distribution function, f@. x, t), 
governed by the relativistic Boltzmann equation. The 
transverse dynamics of relativistic protons propagating 
in a strain modulated superlattice is modeled by a bar- 
manic crystal field potential’ and leads to generation of 
a transverse current. This couples the Vlasov equation 
to the Maxwell wave equation. Therefore, presented 
problem reduces to a self consistent solution of the 
Vlasov and the wave equations. 

Collective behavior of a particle beam channeling 
along the z axis can be described in terms of the rela- 
tivistic Vlasov equation 

af 1 -+-(pa-;Aa)=$ + (1) at my 
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Here A is a vector potential of an electromagnetic field 
and $ is a phenomenological harmonic crystal-field po- 
tentialz, which describe.? both transverse focusing of the 
beam and longitudinal modulation of the minimum of 
the hartnonic potential well. 

$ = $lo+ $I, (x - x, cos gzy, (7.) 

where g = 2x11 fis the strain modulation periodicity 
and x,, Q,, I& are parameters of the potential. 

E$. (1) will be treated iteratively and only linear 
temu in the A-field will be retained. In the 0-th order 
solution A = 0, and the corresponding distribution 
function f = r”’ is obtained from the solution of 

aP 2 af@) SE!%, 
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A class of solutions, 6”. describing a beam with a 
shxply peaked initial momentum distribution, A can be 
co”swcti a< follows 

co’ = no 6(x - P) S(px - p’,“’ )A(p, - p& (4) 



where na is a concentration of particles per unil area of 
the channeling plane and the steady state trajectory is 
desclibcd m follows 

p1 = &T cm (Ed (3 
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Here U = g/kg, where, k is a focusing strength of the 
@. crystal channel give” exp uXly below 

(6) 

We have assumed that only the transverse component of 
the A-field is present and Ax E A@, t). We seek a per- 
turbed solution, P! in the following form 

6’) = no 6(x - 8)) &ix - p’,“’ ) h(z, p, , I) , (7) 

where h describes bunching of particles due to the pres- 
ence of the A-field. Substituting E@.(4)-(7) and (2) 
into Eq.(l) leads to the following kinetic equation for h 
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The inhomogeneous term in the above equation 

plays the role of a driving force representing accelera- 
tion of the particles by the ponderomotive force due to 
the transverse motion (induced by the crystal tield) in 
the presence of the A-field. The resulting transverse cur- 
rent couples E&(S) to the following wave equation 

(&- $$)A= 
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sin gz, (9) 
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resulting in a closed system of equations for h and A. 
Here the A-field can be identified as a sum of the 
macroscopic driving field and a self consistent electro- 
magnetic field propagating in the crystal stnxture. We 
stat with a single plane wave solution of arbitrary o 
and k propagating in free space along the z axis in both 
directions and use it a? a 0-th order iteration step 

A”‘=A e-iot*ikz 
0 (10) 

Putting A = A’:) (left and right propagating waves) in 
Eq.(9), one can solve it analytically for h = h(l) by 
constructing a Green’s function with the appropriate 
boundary conditions built in it. The solutions for 
A’:(z) can hc written explicitly in tcnns of the Green’s 
function for the Ilelmhnllz equation. On the other hzmd, 

one can model the effect of coupling by adding a small 
complex part it? = u’ + ip’ to the k-vector; here a is a 
gain/loss coefticient and !3 describes a small shift in the 
phase velocity of the optical mode. Deamplification of 
the back traveling wave can be summarized by the fol- 
lowing expression 

,-E-f” dpzQZh ‘=& M-(V) 9 (11) 
1 -m 

where 

v- = mykclpz + k - g, (12) 

ad 

(13) 

(14) 

is the characteristic form occurring in diffraction theory, 
with the principal maximum at x = 0. 

III. ACCELERATION RATE 

Imposing resonant condition, v- = 0, in Eq.(ll) 
fixes the wave vector of the optical mode as follows 

g = mykc/pz + k (15) 

One can notice that apart from a slowly varying func- 
tion Q, the remaining functions occurring in the inte- 
grand in E&(11), namely. A and l- are sharply peaked 
functions of momentum characterized by the respective 
widths: 

(+), and (T),= f (16) 

Now one can compare relative sharpness of both func- 
tions; A and r. Typical value of the relative momen- 
tum spread is of the order of 10m4. Assuming superlat- 
tice modulation of 5OOA and crysti length of 5 cm al- 
lows one to evaluate the width of r. Both characteristic 
widths can be summarized as follows 

(if), = 1o-4 , (?),= 10-6. 
(17) 

The integration in Eq.(ll) is carried out assuming that 
the sharper function, namely r, is approximated by the 
b-function. This reduces the gain/loss coefficient to the 
following simple expression 

$%-; *,g p)*-* (18) 



The above final result will serve as a starting point for 
further feasibility discussion. 

IV. THREE WAVE MIXING 

Spontaneous bunching of the proton beam channel- 
ing through a superlattice and interacting with the elec- 
tromagnetic wave results in energy flow from the wave 
to the beam. mis particular kind of particle density 
fluctuation, h, has the form of a propagating plane 
wave of the same frequency, o, as the emitted electro- 
magnetic wave. The phase velocity of the moving 
bunch matches the velocity of protons in the beam. 
Therefore, the quantity ‘fmwlpz = k, represents the 
wave vector of the propagating particle density bunch. 
Keeping in mind that the periodicity of the undulator 
represents a static wave with a wave vector g, and that k 
is the wave vector of the electromagnetic wave, we can 
analyze our results in the language of three wave mix- 
ing3. 

Furthermore ‘“momentum” conservation of all three 
modes yields the v- = 0 conditions. The last condition, 
k, = g - k. is equivalent to a momentum “recoil” be- 
tween the particle density “bunch” and the electromag- 
netic wave (deamplification of the backward propagating 
wave), where a four momentum (0, g) is transferred 
from the backward propagating wave to the forward 
moving proton bunch. 

V. FEASIBILITY ASSESSMENT 

We will discuss the feasibility of the proposed 
scheme by considering (110) planar channeling in a 
strain modulated Si crysra14. We write the undo&or pe- 
riod as I= Nd, where d = 1.92 p\ is the spacing between 
successive lattice planes and N is the number of such 
planes. The strain modulation, of course, requires a sec- 
ond component, such as Ge; however, we will use the 
parameters of Si for convenience. 

Relativistic particles while channeling along the 
path undergo transverse harmonic oscillations from the 
crystal field potential, an analog of the betatron oscilla- 
tions, with the characteristic frequency a$ = e$,lm. 
One can see from Eq.(13) that if the angular velocity of 
a particle traversing the strain modulated path, o = 
2zv,,lf, approaches o$/‘&@oppler shifted betatron fre- 
quency), the undulator parameter, Q, has a resonance (U 
--f I), which would enormously enhance the gain/loss 
coefficient. However, the excessive growth of the undu- 
later parameter would soon result in a rapid dechannel- 
ing of the particles. One can see this easily if Q is 
rewritten in the following form 

” mar 
Q=E I, 

“II 
(19) 

where vI ,v,, are transverse and longitudinal components 
of the particle velocity, respectively. 

For small values of y (U = I), the following sim- 
ple physical criterion allows one to estimate the maxi- 
mum value of Q. Dechanneling will occur if the trans- 
verse kinetic energy of the particle exceeds the binding 
energy of the harmonic potential (a particle leaves the 
channel). If the maximum transverse velocity of a 
channeling particle is vI and a is the distance between 
adjacent channels (for (110) channeling in Si a = 5 A), 
the above condition can be written as follows: 

The equality sign in Eq.(20) along with F&(19) fix the 
maximum allowed value of tbe undulator parameter as 

a”“=: t 4 
e% Y 
a-1 (21) 

The above expression can be evaluated for relativistic 
protons channeling through our model superlattice as 

Q- = 7.5 1 d& 10-24 cm”2 g”Z (22) 

Now, one can evaluate Eq.(ll) assuming only one pro- 
ton-by assigning n to be an inverse area of the than- 
neling plane per one particle for typical values of the 
beam concentrations, n = 1OL6 cm-‘. This way a de- 
scribes the rate of optical amplitude depletion per one 
particle - the acceleration rate. Assuming y of 2, I = 
5oOA and 

(?),= 10-d 

yields the following value of the acceleration rate 

a = 3.53 1 10-4 cn-’ cw 
The nominal acceleration efficiency in units of eV/cm 
will, obviously, depend on the energy density of the ac- 
tual optical cavity. A state of the art visible laser6 
would provide E-field of 10” V/m. As concluded 
elsewhere’ it yields the accelerating gradient of 3.5 
Gevlm. 
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